

Energy Storage Technologies at AEP

Windiana Conference July 21, 2010 Tom Weaver

The Evolution of the Electric Utility System

Before Smart Grid:

One-way power flow, simple interactions

Sources: The Economist; ABB

AEP's "Grid Management" Infrastructure

- Transforming from Single Source Distribution Circuits to an Interconnected Grid with Multiple Sources, Real Time Visualization, Optimization, Automation, and Control.
 - Installation of a distribution management system (SCADA) and the development of a distribution energy management system with visualization tools for "multi-source" distribution operations.
 - Control of voltage and Var to maximize grid efficiency from the generator to the customer
 - Circuit reconfiguration to improve reliability and optimize circuit performance.
 - Accommodate and take full advantage of distributed energy sources including renewables, storage, customer generation, and demand response
 - Installation of remote sensors and automated control devices to provide "real time" analysis of the dispatch of multiple sources on a feeder

AEP's Energy Storage Technologies

Substation Scale Battery

- 2006: 1 MW, 7.2 MWh; Deferred substation upgrade in Charleston, WV
- 2008: Three installations; 2 MW, 14.4 MWh each; With "islanding" in Bluffton,OH; Balls Gap,WV; East Busco,IN
- 2010: 4MW, 25MWh; To be installed in Presidio, TX

Community Energy Storage

- Small distributed energy storage units connected to the secondary of transformers serving a few houses or commercial loads.
- Pursuing development & deployment:

Churubusco, IN NaS 2 MW in Service

Performance at Churubusco - Jan 26-30, 2009

NaS Islanding - Churubusco, IN

CES Specifications

Key Parameters	Value
Power (active and reactive)	25 kVA / 25 kW
Energy	75 kWh *
Voltage	240 / 120V AC
Battery - PHEV	Li-lon
Round trip efficiency	> 85%

AEP Specifications for CES are "OPEN SOURCE" for Public Use and Feedback. During 2009 EPRI hosted free, open webcasts to solicit industry wide input.

www.aeptechcenter.com/ces

^{*} Initial Project is using 25 kWh Batteries

AEP Ohio GridSMART Demonstration - CES

- CES: 2MW/2MWh; Fleet of 80 25-kW Units
- Circuit: Morse Rd 5801; 13 kV, 6.3 MVA Peak Load, 1742 customers
- Coverage: Approximately 20% of customers
- · Schedule:

Aug 2010 Test Prototypes
Jun 2011 First 0.5MW
Nov 2011 Remaining 1.5MW

Monitor and Evaluate: 2012 - 2013

Morse Rd 5801

Community Energy Storage (CES)

CES is a distributed fleet of small energy storage units connected to the secondary of transformers serving a few houses or small commercial loads.

Integrating Renewables with Storage

- Energy Storage can optimize the value of Solar & Wind
 - Time shifting
 - Mitigate intermittency and voltage fluctuations
- Integrating wind at Transmission Levels
- No present plans to place wind on the Distribution System – but interested
- Collaborating with EPRI, EEI, SEPA, IEEE and vendors to develop standards for interconnections

Questions?

Tom Weaver – AEP – <u>tfweaver@aep.com</u> 614-716-5829

